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Abstract

We develop a partitioning algorithm to decompose complex 2Ddata into small simple subregions for effective parallel quad
meshing. We formulate the partitioning problem for effective parallel quad meshing as a quadratic integer optimization problem
with linear constraints. Directly solving this problem is expensive for large-scale data partitioning. Hence, we suggest a more
efficient two-step algorithm to obtain an approximate solution. First, we partition the region into a set of cells usingL∞ Centroidal
Voronoi Tessellation (CVT), then we solve a graph partitioning on the dual graph of this CVT to minimize the total partitioning
boundary length, while enforcing the load balancing and each subregion’s connectivity. With this decomposition, subregions are
distributed to multiple processors for parallel quadrilateral mesh generation. We demonstrate that our decomposition algorithm
outperforms existing approaches by offering a higher-quality partitioning, and therefore, improved performance and quality in
mesh generation.
c© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committeeof the 24th International Meshing Roundtable (IMR24).
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1. Introduction

In recent years, the acquisition or generation of large high-resolution geometric datasets pose new challenges to
the design of effective processing algorithms. These big and complex data are expensive to model and analyze using
existing sequential algorithms, as the limited CPU and memory are often insufficient to handle billions of elements
efficiently. Parallel algorithms utilizing high-performancecomputers make it possible to solve large and complex
problems efficiently on hundreds or thousands of computing clusters and is therefore desirable.

Divide-and-conquer is a natural and effective strategy in parallel mesh generation for large geometric data. The
given region or object is first decomposed into a set of solvable and simplified subparts; then each subpart is distributed
to a working processor for mesh construction; finally, individually generated meshes are merged to get the final result.
Parallel mesh generation strategies such as Delaunay-based methods and advancing front techniques have been used
for both triangulation [1–3] or tetrahedralization [4,5].Following this general paradigm, in this work we aim to
develop a partitioning algorithm on comlex and large-scale2D regions for parallel quadrilateral mesh generation.

In geometric processing through divide-and-conquer, the partitioning of data often directly dictates the algorithm’s
efficiency and quality. We formulatethree main criteria as follows: (1) The areas of the subregions should be similar;
(2) The boundary length of each subregion should be small compared with it’s area; and (3) Each subregion should
have desirable geometric property, and more specifically for quad meshing, it should have corner angles close to
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kπ/2, k ∈ {0, 1, 2, 3}. Thefirst two criteria determine the parallel performance: the balance of work load on different
processors, and the communication cost among processors. Efficient parallelization should balance the workload
distributed to different processors and should minimize interprocessor communication to reduce synchronization and
waiting. Thethird criterion on the subregion’s geometry affects the quality of the final quad tessellation. For
example, on a square subregion one can generate a quad mesh where every element is uniform and not sheared; but on
a triangle subregion, the smallest angle of the resultant quad mesh will inevitably be smaller than the smallest boundary
angle of this triangle patch. Hence, for effective quad mesh generation, it is desirable to partition the geometry
into subregions whose boundary angles are nearkπ/2 to construct less-sheared quad elements. To incorporate the
geometric constraint in data partitioning, however, is sometimes prohibitively expensive. We will discuss this issuein
Section 3 and propose a more efficient strategy to tackle it.

After data partitioning, we distribute subregions to different working processors for mesh generation. In our im-
plementation, we use consistent boundary sampling andadvancing frontfor parallel meshing on each subregion. The
sub-meshes are finally merged together then a relaxation is performed to get the final result. Themain contributions
of this paper include:

• We study geometry-aware data partitioning for effective parallel mesh generation, and suggest new models to
partition large and complex 2D regions into subparts with desirable geometric shapes for quad meshing. Compared
with existing partitioning algorithms, our approach couldlead to more efficient parallel processing and higher-
quality meshing results.

• We develop a parallel computing framework for quad mesh generation of large-scale 2D regions. It can effectively
utilize parallel computational resources to handle big geometric data. We demonstrate an application in coastal
modeling where massive-size coastal terrains and oceans need to be discretized for simulations.

2. Related Work

2.1. Data Partitioning

Given a geometric regionM, a set of components{Mi} is apartition of M if (1) their union isM, i.e.,
⋃

i Mi = M,
and (2) allMi are interior disjoint, namely,∀i, j M◦i ∩ M◦j = ∅, whereM◦i = Mi\∂Mi is the open set ofMi . Depending
on the geometric processing applications, partitioning techniques consider different criteria accordingly. Thorough
surveys on geometric partitioning algorithms have been given [6,7] for computer graphics and geometric modeling
applications; some data benchmarks [8] have been built for evaluating these methods in these graphics applications.

Slightly different from the partitioning criteria considered in graphics applications, in order to obtain effective
data partitioning for parallel computing, partition strategies can be classified into two categories:extrinsic space
partitioningandintrinsic manifold partitioningmethods.

We call the first strategy theextrinsic space partitioningmethod, because it partitions data by partitioning the
data’s embedding space. For example, data can be decomposedby spatial subdivision or partitioning structures such
as quad-tree or octree [9], axis/planes [2], or blocks [10]. In parallel data processing literature, a very popular extrinsic
space partitioning strategy is thespace filling curve[11,12]. The idea is to first fill theN-dimensional space with a 1-
dimensional curve and establish a bijective map between cells in the space and curve segments passing them. Different
regions (cells) in the space are therefore indexed by this curve, and partitioning of the space (therefore, partitioning of
data) is obtained by partitioning the curve accordingly. Ingeneral, data (space) partitioning using space-filling curves
or other extrinsic space partitioning methods is very efficient, as demonstrated in several successful applications, such
as computational physics, algebraic multigrid, PDE solving, adaptive mesh refinement [13,14]. However, algorithms
based on spatial partitioning are not suitable to handle data that have complex geometry or nonuniform properties.

We call the second category theintrinsic manifold partitioningmethod, and it partitions the data model on its in-
trinsic tessellation. The data are discretized into a mesh or a graph, where elements or nodes are clustered into subparts
directly [15] or recursively [16]. Among this category, an effective and widely used strategy is calledgraph partition-
ing [17–21], which usually produce good-quality partitions with balanced load and reduced communication. Solving
the graph partitioning is NP-complete, and several effective strategies include spectral bisection [18], Kerninghan-Lin
algorithm [17] and the multi-level scheme [19]. The spectral bisection algorithm [18] uses the spectral information
to partition the graph. The eigenvector of the Laplacian matrix is computed to bisect the graph. Spectral Bisection
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usually produces a good partitioning, however it is very expensive to compute, especially for large matrix. On the
other hand, the Kerninghan-Lin algorithm [17] is a fast heuristic scheme. It starts with an initial bipartition of the
graph, then iteratively swaps a subset of vertices from eachpart to reduce the energy. This algorithm is fast, however,
the initial partition is critical but often not easy to obtain. The multi-level method, including the widely adopted
algorithm/softwareMETIS [19], uses a three-phase scheme: first, the graph is simplified to a coarse graph; then a
partitioning is performed on the coarsened graph; finally, the partitioning is modified during the progressive graph
refinement. These existing graph partitioning algorithms focus on only tackling the load balancing and communi-
cation reduction issues. However, only considering these two criteria is insufficient. Incorporating extra geometric
constraints is often critical in geometric modeling applications. The Medial Axis Domain Decomposition (MADD)
algorithm [22] merges triangles to eliminate small angles then solves a graph partitioning on dual graph of the merged
mesh. Subregions constructed using MADD partitioning usually possess larger corner angles than METIS. For our
problem, it is desirable to have perpendicular corner angles. Therefore, a geometric term to incorporate this angle
constraint can be formulated and included into thegraph partitioningmodel. Furthermore, an additional connectivity
constraint is needed to ensure each subregion form only one connected component. However, solving the original
graph partitioning is already NP-hard, and the incorporation of these extra geometric constraints will further signif-
icantly increase the complexity of the problem (see Section3 for details). This makes the efficient solving of this
problem highly challenging.

2.2. Quadrilateral Mesh Generation

Quadrilateral mesh generation has been studied in computergraphics and geometric modeling fields. Quad meshes
can be constructed through either theindirect or direct approaches. Theindirect approaches first generate an inter-
mediate structure/tessellation that can be easily constructed, e.g., a triangle mesh, then convert it into a quadrilateral
mesh [23]. One big drawback of this method is that the layout of the unstructured elements in the intermediate tessella-
tion determines the layout of final quad mesh, and there are usually a large number of singularities (i.e., non-valance-4
vertices) in the resultant quad meshes, which are usually undesirable for efficient simulation. Thedirect approaches
construct quads on the model directly. Related techniques include quad-tree ([24]), template-guided decomposition
([25]) and advancing front([26]). A related problem is the quadrilateral mesh generation on curved surfaces. [27] gave
a good survey on this topic. However, the curved geometry pose extra challenges in quad mesh generation and many
recent surface quad meshing algorithms [28,29] use a cross frame field to guide the construction of the quad meshes.
Finding an optimal cross frame field reduces to nonlinear integer programming, which is computationally expensive
for large-scale geometric regions. Another related problem is thequad layout patchconstruction [30]. Its goal is to
partition a surface into topologically rectangle patches,upon which quad meshes can be constructed. In this paper,
we didn’t adopt this strategy, because the topological constraint on restricting subregions to be “4-sided polygons” is
very expensive to enforce.

3. Region Partitioning
Data partitioning is the first step in a divide-and-conquer framework for parallel computational models. A good

partitioning with balanced workload and small interprocess communication helps improve computational efficiency.
Furthermore, in our parallel meshing problem, a good data partitioning is also critical in generating high-quality quad
elements. We use three criteria to quantitatively evaluatea partitioning:workload balance, total separator length,
andseparator angle deviation. Graph Partitioningis a suitable strategy to solve our partitioning, because itcan
systematically model and optimize these criteria. In this section, we will first introduce the related notation (Sec. 3.1)
and formulation of the three criteria (Sec. 3.2, 3.3 and 3.4)and theConnectivity Constraints(Sec. 3.5), then propose
our algorithm in Sec. 3.6.

3.1. Notation

Given a tessellationM = (VM ,EM, FM) of a 2D region, whereVM ,EM, FM are the sets of vertices, edges, and faces
(cells) respectively, letG = (VG,EG) denotes its dual graph, whereVG,EG are the node and arc sets respectively. A
nodev ∈ VG corresponds to a cell ofM. Two nodesv1, v2 ∈ VG are connected by an arc if their corresponding cells
are adjacent, namely, share an edge. Therefore, each arc ofEG also corresponds to an edge inEM. The weight of a
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nodev ∈ VG is defined to be the area of its associated cellf ∈ FM, and an arc’s weight is defined as the length of its
associated edge. The partitioning onG can be computed on the dual graphG. A k-way Graph Partitioningdivides
VG into k connected components, each of which is a subregion that willbe processed individually. In practice,k-way
partitioning is usually solved through recursive bisection [19]. Hence, we recursively partitionG into two sub-graphs
G0 = (VG0 ,EG0) andG1 = (VG1 ,EG1), whereVG1 = VG \ VG0. This also partitions cells in the original tessellationM
into two setsM0 andM1, if an edgee ∈ M is shared by two cellsfi , f j from distinct subsets,fi ∈ M0, f j ∈ M1, then
edgee is called aseparator.

For each nodevG
i ∈ VG, we assign a variablexi ,

xi =

{
0, if vG

i ∈ VG0

1, if vG
i ∈ VG1

.

Then for each arceG
i j = [vG

i , v
G
j ], we assign a variableyi j = xi − xj :

yi j =

{
1 or − 1, if vG

i and vG
j are in two sub-graphs

0, otherwise
.

We havey = Ux, wherex andy are node and arc variable vector respectively, andU is a |EG| × |VG| matrix. With
these variables, we formulate the three criteria as follows.

3.2. Workload Balance

Load balancing refers to the practice of distributing approximately equal amounts of work among tasks, so that
all tasks are kept busy all of the time. Unbalanced workload between working processors leads to inefficiency in
parallel computing, as the slowest task often determines the overall running time. In our problem, the workload on
each working processor can be estimated by the area of each subregion to mesh. On the dual graph, the subregion
area can be calculated using the sum of weights of nodes in thecorresponding subgraph.

A balanced partitioning should avoid big area difference between subregions. Hence, it is formulated as the fol-
lowing constraint:

c1 ≤ xTwv − c ≤ c2, (1)

wherex = (x1, x2, . . . , xn)T is the variable vector,wv =
(
wv1 ,wv2, . . . ,wvn

)T is the node weight vector,c = 1
2

∑
i wvi ,

andc1, c2 are the constant thresholds (in our experiments,c1 = c2 = 0.1c).
After a k-way partitioning is obtained, its workload balance can be evaluate by the ratio between the areas of the

largest and smallest subregions:
RW = Amax/Amin, (2)

whereAmax andAmin are the areas of the largest and smallest subregions respectively. RW close to 1 means better
workload balance.

3.3. Total Separator Length

In parallel computing, inter-process communication meansoverhead. A smaller total separator length usually
indicates less communication cost. In our geometric data partitioning, a smaller separator length also indicates
(1) smoother subregion boarder lines, (2) better geometriccompactness of subregions, and (3) more efficient post-
processing refinement (see Section 4). Therefore, it is desirable to minimize thetotal separator length

LS = yTWey = xTUTWeUx, (3)

wherey =
(
ye1, ye2, . . . , yen

)T is the edge variable vector,We = diag(we1,wen, . . . ,wen) is a diagonal matrix composed
of arc weights.

With the above two criteria, solving a graph partitioning can be formulated as:

min xTUTWeUx,

subject to c1 ≤ xTwv − c ≤ c2,

xi ∈ {0, 1}.

(4)
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Optimizing problem (4) is NP-hard. For large data, multilevel schemes such as METIS [19] have been widely
adopted to obtain good approximate solutions. Figure 1 illustrates a simple example. The input tessellationM is
shown in (a) and the partitioning result by METIS [19] is shown in (b). The two partitioned subregions colored in
blue and red respectively. We can see that the two subregionshave the same area with total separator length minimized.

Minimizing the total separator length will makes the boundary of subregions straight, and it can increase the
compactnessof each subregion. On each subregionMi , thecompactnesscan be measured by the ratio between the
boundary separator’s length ofMi and the area ofMi . Globally, we can compute anaverage compactness ratio,

R̂C =
LS

kAM
, (5)

wherek is number of subregions, andAM is the total area of the region. SmallerR̂C comes from a smallerLS and
indicates better compactness.

3.4. Separator Angle Deviation

(a) (b) (c)

Fig. 1: Graph Partitioning on a simple example. (a)
The original mesh; (b) the two (red and blue) subre-
gions obtained by METIS [19]; (c) the partitioning
result with separator angle deviation considered.

Solving the graph partitioning formulated in Eq. (4) will result
in balanced area and minimized total separator length. However,
in many geometric processing tasks, constraints on the geometry
of subregions are important. In our quad meshing problem, ideally,
each subregion should look like a square. Less strictly, since we use
the advancing front technique to generate quad meshes (Section 4),
it is desirable to have angles between separators close tokπ

2 . There-
fore, we include a new separator angle term into graph partitioning
to penalize each such angle’s deviation fromkπ

2 .
Angle Deviation Function. Consider the original tessellationM

of the given 2D region, suppose two edgesei , ej ∈ EM share a vertex
v and form an angleθi, j . For concise representation, in the following,
we useInc(i, j) = 1 to denoteei andej are incident, andInc(i, j) = 0
means they are not incident. We define anangle deviation function

δθi, j =

{
mink{|θi, j −

kπ
2 |, k ∈ {0, 1, 2, 3}}, if Inc(i, j) = 1

0, if Inc(i, j) = 0
(6)

to describe the deviation from angleθi, j to the nearestkπ2 angle.
Accumulated separator angle deviationcan then be formulated as

Dθ = yTWθy = xTUTWθUx, (7)

wherey =
(
ye1, ye2, . . . , yen

)T is the edge variable vector, andWθ =



0 δθ1,2 δθ1,3 . . . δθ1,n
δθ2,1 0 . . . . . . δθ2,n
. . . . . . . . . . . . . . .

δθn,1 . . . . . . . . . 0


, Wθ is an |EG| × |EG|

matrix storing deviation anglesδθi, j . This angle deviation matrixWθ can be precomputed by traversing all the edge
pairs of the tessellationM once.

Furthermore, we can show that Eq. (7)will evaluate and only evaluate the angle deviation betweenadjacent
separators. Suppose two edgesei = [u, v], ej = [u,w] are incident separators, sharing vertexu. Then, (1)yei , 0 and
yej , 0, and (2)v andw belong to the same subregion and have a same indicator value,xv = xw. From (1) and (2), it is
not difficult to see thatyei andyej are both−1 or both+1. Therefore, anon-negative contributionδθi, j will be added to
the accumulated separator angle deviationDθ. To obtain a geometrically desirable partitioning, we can minimize the
separator angle deviation term (7) together with total separator length (3), with the workload balance constraint (1).

Finally, after the partitioning, we can numerically evaluate theaverage separator angle deviation:

δ̂θ =
1

NC
(
∑

Inc(i, j)=1

δθi, j ), (8)
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whereNC is the total number of corners formed by incident separators. The smaller̂δθ is, the better.

3.5. Connectivity Constraints

Currently we have formulated the three criteria. To guarantee the result is a bipartitioning, we need to impose
the connectivity constraint, which is often not explicitly considered in existing graphpartitioning literature, due to
its complexity. Specifically, nodes in each subregion should form one connected component. Without explicitly
enforcing this, although minimizing total separator length often tends to penalize the partition that produces multiple
disjoint subsets, we can sometimes observe that more than one connected components exist in one subregion.

To enforce connectivity of each subregion, we can formulatethe following explicit constraint. Given a (dual)
graphG = (VG,EG), for any pair of non-adjacent nodesu, v, we define a node setS ⊂ V \ {u, v} to be anode-
cut setthat separatesu and v, if there is no path betweenu and v after S is removed fromG. For example, in
the graph shown in Fig 2, for node pair{1, 4}, {2, 5, 7} is a node-cut set and{3, 6, 8} is another node-cut set. For
{u, v} that [u, v] < EG, we defineΓ(u, v) to be the set consisting of all the node-cut sets of{u, v}. In this example,
Γ(1, 4) = {{2, 5, 7}, {2, 5, 8}, {2, 6, 7}, {2, 6, 8}, {3, 5, 7}, {3,5,8}, {3,6,7}, {3, 6, 8}}.

Fig. 2: An example graph for connectivity
constraint.

The connectivity constraint can be described as: between each pair of
nodesu, v that are in the same subregion, any node-cut set inΓ(u, v) must
have at least one node being assigned to this subregion. Using the binary
variablexi defined previously, the connectivity constraints can be formu-
lated as a set of linear constraints. For any two non-adjacent nodes in sub-
graphG1:
∑

w∈S

xw ≥ xu + xv − 1,∀S ∈ Γ(u, v), for ∀xu = xv = 1, [u, v] < EG, (9)

meaning that every node-cut set must have at least one node being assigned as 1. Similarly, for any two non-adjacent
nodes in subgraphG0:

∑

w∈S

xw ≤ xu + xv + |S| − 1,∀S ∈ Γ(u, v), for ∀xu = xv = 0, [u, v] < EG. (10)

These constraints ensure that there is at least one path connecting non-adjacent nodesu andv if they are grouped to a
same subgraph.

By incorporating both theseparator angle deviation(Eq. 6) andconnectivity constraints(Eqs. 9,10) into graph
partitioning, the quadratic integer programming problem with linear constraints can be solved through branch-and-
bound algorithm. In our implementation, we use the open-source Basic OpeN-source Mixed INteger(BONMIN)
solver from [31] to obtain a solution. To solve mixed integernon-linear programming problems, BONMIN allows
one to choose optimization strategies including branch-bound, outer approximation (OA), Quesada Grossman branch-
cut, and Hybrid OA based branch-cut.

Figure 1 (c) shows the solution of this new graph partitioning. With the minimization of separator angle deviation
and the enforcement of connectivity constraints, a partitioning more suitable for quad mesh generation is obtained.
However, because (1) incorporating separator angle deviation significantly increase the numbers of non-zero cross
multiplication of indicator variables, and (2) the enforcement of connectivity introduces an exponential number of
linear constraints. Solving such a new problem becomes prohibitively expensive for even moderately large problem.

3.6. Our Two-Step Partitioning Algorithm

We proposed a two-stage partitioning scheme to incorporatethe two new constraints discussed in the last section.
A key observation this idea based upon is that:if the cells of the initial tessellation has near-square geometry, then
the partition performed on the dual graph of this tessellation tends to have smaller separator angle deviation. Hence,
first, we useL∞-CVT to generate a tessellation with cells similar to squares (Sec. 3.6.1); second, we solve our graph
partitioning on this tessellation to get a set of subregionswith balanced workload and small total separator length,
with connectivity constraints enforced on the subgraphs during their refinement.(Sec. 3.6.2) We call this algorithm a
L∞-CVT-GPalgorithm for short, and the idea is illustrated in Fig. 3.
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(a) (b) (c)

Fig. 3: Partitioning a 2D “Key” Region for Parallel Quad Mesh
Generation. (a) The input 2D boundary; (b)L∞-norm CVT on the
input boundary; (c) our partitioning result, with different subre-
gions indicated using different colors.

(a) p = 4 (b)p = 6 (c)p = 8 (d)p = 10

Fig. 4: Lp-CVT using different p values. The results are similar
whenp >= 8. In our experiments, we useL8-CVT to approximate
L∞-CVT.

3.6.1. L∞ Centroidal Voronoi Tessellation
The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in geometric

modeling and computer graphics. A 2DVoronoi Diagramof a given set of distinct pointsX = {xi}
n
i=1 in R2 is defined

by a set of Voronoi cells{Ωi}
n
i=1 where

Ωi = {x ∈ R2| ‖x − xi‖ ≤ ‖x − x j‖,∀ j , i}.

These pointsX are calledsites. Each Voronoi cellΩi is the intersection of a set of half-planes. AClipped Voronoi
Diagramfor the sitesX within a given 2D domainΩ is the intersection of the Voronoi Tessellation and the domainΩ,
denoted by{Ωi |Ω, i = 1, . . . , n}, where

Ωi |Ω = {x ∈ Ω| ‖x − xi‖ ≤ ‖x − x j‖,∀ j , i}. (11)

In other words,Ωi |Ω = Ωi ∩ Ω. TheCentroidal Voronoi Tessellation(CVT) is that each site of the Voronoi cell is
coincident to this cell’s centroid.

Fig. 5: The trajectory ofLp(x, y) = 1 with differentp
values. With the increase ofp the trajectory gradually
approximates the unit square.L∞(x, y) = 1 gives a
square.

The Lp Centroidal Voronoi Tessellation Energy [32] can be de-
fined as:

F(X) = F([x1, x2, . . . , xn]) =
∑

i

∫

Ωi∩Ω

‖y − xi‖
p
pdy (12)

where‖z‖p = (
∑

j |zj |
p)

1
p , zj is the j-th coordinate of a 2D pointz.

Figure 5 shows the trajectory with differentp. With the increase of
p, the trajectory approximates to the square. The trajectoryof L∞ is
a perfect square, where theL∞ norm of ad-dimensional vectorz is
the maximal component inz, ||z||∞ = maxj |zj |. For efficient CVT
computation, we choose a sufficiently largep to approximate theL∞
norm. This also allows us to efficiently compute the gradient ofF(X)
of Eq. (12). We testLp-CVT on the key model using different p
values. And as the results illustrated in Figure 4, whenp > 8, the difference ofLp-CVT energy becomes very small,
so we useL8-CVT to approximateL∞-CVT in all our experiments. Since we useL8 which is smooth, the optimization
of CVT energyF can be solved efficiently using the quasi-Newton BFGS solver [33].

In summary, the algorithm to compute theLp-CVT on the input 2D regionΩ has four steps.

1. Get a uniformly sampled sites setX. In our implementation, we simply embedΩ on a spatial grid, the grid points
insideΩ are the initial sites.

2. Use the sweeping line algorithm [34] to construct the initial Voronoi Diagram.

3. Get theL∞-CVT tessellation by optimizing CVT energy.

4. Clip the CVT using∂Ω to get theL∞-CVT of Ω.
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3.6.2. Graph Partitioning Based on L∞-CVT
After solving theL∞-CVT, we get a tessellatioñM of the 2D region. Then oñM’s dual graphG̃, we solve the

graph partitioning formulated in Eq. (4). Following the heuristics used in [19], instead of explicitly enforcing the
large number of connectivity constraints in Eqs. (9, 10), wecan adopt a region growing examination to check the
connectivity of each subregion, disconnected elements will be grouped into the other subregion automatically. During
our optimization, after everyK iterations, we perform such an examination and update onG̃. In practice, this strategy
is efficient and effective in enforcing the connectivity of subregions.

We test different partitioning results on the Key model using (a) original graph partitioning by METIS, (b) geometry-
integrated graph partitioning solver introduced in Sections 3.4 and 3.5, and (c) this two-stepL∞-CVT-GP algorithm.
We also evaluate the workload balancing ratioRW, average compactnessR̂C, and average separator angle deviationδ̂θ
on these partition results. Using these three partitioningmethods,RW are 1.13, 1.14, and 1.18, respectively;̂RC are
1.11, 1.15, and 1.18, respectively, and̂δθ are 0.26, 0.12, and 0.15, respectively.

As expected, the graph partitioning without geometric constraint focuses on workload balance and separator
lengths, and gets bestRW andR̂C, but very bad angle deviation. The expensive geometry-integrated graph partitioning
produces smallest angle deviation. This two-stepL∞-CVT-GP produces results with slightly worseRW, R̂C, andδ̂θ
than that from the geometry-integrated graph partitioning. But its separator angle deviation is significantly better than
the original graph partitioning, and its speed is significantly faster than geometry-integrated graph partitioning. More
thorough comparisons will be given in Section 5.

Through theL∞-CVT, we can also directly obtain a region partitioning. Is such a partitioning sufficient, so that we
no longer need to further solve a graph partitioning? This section illustrates that the two-stepL∞-CVT-GP algorithm
usually leads to a better data partition for the parallel meshing problem. One observation is that: with theincrease
of the number of Voronoi sites/cells, the decomposition from L∞-CVT will become more uniform (better workload
balancing) and more square-like (smaller separator angle deviation). We have performed extensive experiments on
L∞-CVT to verify this. Table 1 is the partitioning statistics on the key and the pipe model. If we directly evaluate the
quality of the partitioning suggested by the CVT decomposition, when the number of Voronoi cells increases from
16 to 128, the workload balancing ratioRW (Eq. (2)) reduces from 1.65 to 1.23, while the average separator angle
deviationδ̂θ also reduces from 0.26 to 0.18.

Table 1: Partitioning on the Key and Pipe models using directCVT versus using our CVT-GP algorithm.NS is the number of subregions,RW, R̂C,
andδ̂θ are the workload balance ratio, average compactness, and average separator angle deviation.

Key Pipe
CVT/CVT-GP CVT/CVT-GP

NS 16 32 128 32 64 256
RW 1.65/1.15 1.45/1.24 1.23/1.11 1.81/1.31 1.65/1.31 1.41/1.27
R̂C 1.21/1.11 2.21/ 2.01 9.41/9.24 1.82/1.77 4.04/3.88 18.11/17.84
δ̂θ 0.26/0.21 0.21/0.16 0.18/0.17 0.23/0.20 0.18/0.15 0.14/0.12

We have the following observations.

• For a k-way partition, direct partitioning through aL∞-CVT decomposition withk cells will lead to a worse
partitioning result than our two-step algorithm (which first generatesn cells (n > k) then performs a graph partition
to getk subregions).

• In order obtain a partition with similarRW andδ̂θ, directL∞-CVT decomposition should use more sites. But this
will increase the total separator length, resulting in bigger overhead and more singularities.

And we conclude that theL∞-CVT-GP algorithm offers a better partition than the directL∞-CVT decomposition.
More comparisons will be given in Section 5.



W. Yu and X. Li/ Procedia Engineering 00 (2015) 000–000 9

4. Quad Mesh Generation

4.1. Parallel Quad Meshing on Subregions

After the entire 2D region is partitioned, subregions can besent to different processors for simultaneous mesh
generation. Different quad meshing techniques can be applied on the sub-regions. One requirement is to make sure the
neighbouring subregion boundaries should have consistentvertices. We use theadvancing front technique[26] to tile
the interior regions with quads. To ensure the individuallyconstructed sub-meshes can be composed directly, we need
to sample boundary vertices consistently on the shared edgeof adjacent subregions. We use a simple sampling scheme:
first, we compute an average edge lengthl̄ from input boundary line segments, then on each interior partitioning
boundary curveS we evenly samplelS

2l̄
points, wherelS is the length ofS. To ensure the valid generation of a full

quad mesh, the number of the points on the subregion boundarymust be even [26], therefore, each interior separator
line segments is subdivided into two to ensure the number of sampled boundary vertices is even.

The advancing front algorithm initiates a wave front from the boundary of each subregion, along which quadrangles
are constructed inwards until all empty regions are tiled. We implement the advancing front following [26]. The wave
front propagates until the front has 6 or fewer vertices, by when a template is used to finish the quad mesh generation.
Readers are referred to [26] for details.

4.2. Post-processing after Composition

After composing meshes of subregions, we perform a Laplacian relaxation on vertices near separators to improve
the smoothness of the orientations of mesh elements on the partitioning boundary. Each vertex moves towards the
mass center of its neighboring vertices. Since our partitioning algorithm minimizes the total separator length, this
relaxation only applies to a small number of vertices and takes a short time to process. In our experiments, up to 50
iterations are applied to each vertices within a five-ring buffer zone surrounding separators. In our implementation,
we didn’t parallelize this post-processing. But naturally, this refinement can be easily parallelized if needed.

5. Experimental Results

We perform experiments on our high performance computing clusters, SuperMIC, which consist of 128 computing
nodes. Each node has two 2.6GHz 8-Core Xeon 64-bit Processors and 32GB memory. Five datasets have been tested:
a key model with 21.6M boundary segments and 1 inner hole, a pipe model with 57.6M boundary segments and 9
holes, and three coastal ocean/terrain regions : the Gulf of Mexico, Matagorda Bay, and Westbay, with 230M, 250M,
and 550M boundary vertices, respectively. The generated meshes of the two bays and the Gulf of Mexico have about
3, 4.5, and 10 billion elements, respectively.

We compare algorithms in three aspects: (1)Decomposition Quality: the workload balance ratio, total separator
length, and separator angle deviation. (2)Parallel Computation Efficiency: the running time on each working
processors and the total speedup in quad meshing. (3)Meshing Quality: the scaled-Jacobian of quad elements and
number of singularities of the final mesh.

Our experiments are designed to compare 4 decomposition methods: (1) Partitioning via directL∞-CVT, (2) Par-
titioning by METIS [19], a very widely used Graph Partitioning solver, (3) Partitioning by Medial Axis Domain
Decomposition (MADD) [22], and (4) OurL∞-CVT-GP algorithm.

5.1. Partitioning Quality Comparison

Figure 6 illustrates the four partitioning results on the key and pipe models. Table 2 gives the partitioning statistics
for key and pipe model respectively. The workload balance ratio RW is calculated following Eq. (2). WhenRW is
closer to 1, a better workload balance is achieved. The average compactnesŝRC is calculated following Eq. (5). The
average separator angle deviationδ̂θ is calculated following Eq. (8). Note that for each of these three terms,the smaller
the measured value is, the better. From these experiments, we can see that:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: (a-d) Partitioning the key model into 8 subregions using directL∞-CVT, METIS, MADD, and ourL∞-CVT-GP algorithm. (e-h) Partitioning
the pipe model into 16 subregions using directL∞-CVT, METIS, MADD and our algorithm.

Table 2: Decomposition quality comparison (the key and pipemodel): directL∞-CVT, METIS, MADD and ourL∞-CVT-GP method (initialized
4000 CVT Cells).NS is the number of subregions. Our method has comparable workload balance and average compactness, while ourδ̂θ is up
to about 50% and 55% smaller than the METIS method on key and pipe model respectively; our̂δθ is 20% and 15% smaller than MADD on two
models respectively. Compared withL∞ method, ourRW is 40% smaller.

Key L∞-CVT METIS MADD Our Method (4000 cells)
NS 32 128 1024 32 128 1024 32 128 1024 32 128 1024
RW 2.31 2.01 1.92 1.06 1.03 1.02 1.21 1.13 1.08 1.08 1.06 1.04
R̂C 3.93 13.25 104.3 3.61 12.21 93.31 3.98 14.26 104.91 3.85 13.57 105.21
δ̂θ 0.21/0.14 0.18/0.15 0.15/0.14 0.40/0.24 0.32/0.26 0.41/0.21 0.36/0.16 0.32/0.20 0.25/0.19 0.16/0.14 0.17/0.15 0.15/0.14

Pipe L∞-CVT METIS MADD Our Method (4000 cells)
NS 32 128 1024 32 128 1024 32 128 1024 32 128 1024
RW 2.39 2.09 1.98 1.07 1.05 1.04 1.27 1.25 1.13 1.14 1.13 1.10
R̂C 1.34 4.76 36.51 1.18 4.64 36.37 1.32 5.06 35.48 1.25 4.71 36.42
δ̂θ 0.22/0.14 0.18/0.15 0.15/0.15 0.41/0.23 0.32/0.25 0.42/0.21 0.36/0.15 0.32/0.20 0.25/0.21 0.18/0.12 0.15/0.12 0.13/0.11

1) Forworkload balance: METIS leads to the smallestRW. TheRW of our method is about 5% bigger than METIS.
RW of MADD is about 10% bigger than ours. The direct CVT partitioning has worst workload balance and itsRW

is about 55% bigger than ours.

2) Foraverage compactnesŝRC: METIS also leads to the most compact subregions. TheR̂C of our method is about
8% bigger than METIS, but 6% smaller than MADD, and about 2% smaller than direct CVT partitioning.

3) Foraverage separator angle deviationδ̂θ: our algorithm has the smallest separator angle deviation.Our δ̂θ is 40%
smaller than METIS, 20% smaller than MADD, and about 5% smaller than direct CVT partitioning.

Fig. 7: Quad meshing result of the Pipe model, color-coded by
elements’ scaled Jacobian values. The color from blue to red
indicates the mesh quality from high to low.

In Conclusion, our algorithm results in significantly
smaller separator angle deviation than the METIS and MADD
method, while preserving good workload balance and com-
pactness. Compared with the direct CVT decomposition, our
algorithm yields 40% smaller workload balance ratio, while
have slightly better the compactness and the separator angle
deviation small. This indicates that meshing based on our
decomposition is about 20% faster than that using CVT de-
composition. To achieve similar workload balance, the CVT
method needs to use much more (in our experiments, more
than 4 times) cells. Then as a side effect, this will lead to a
significant increase inLS and in singularities of the final quad
mesh (see Section 5.3), which is undesirable.
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(a)

(b)

(c)

Fig. 8: (a, b, c) The quad meshes for West Bay (yellow region inbay map), Matagorda Bay (red region in bay map), and the Gulf of Mexico
respectively. The quad meshes are color-coded in scaled Jacobian.

(a) (b)

Fig. 9: (a) The load balance for 512 working processes of the meshing of our dataset. (b) The parallel speedup of meshing: we test our algorithm
using 4 to 1024 working processes. The yellow dot line is the ideal speedup, and the speed up of our algorithm on different models ranges from
2.78 to 601.5.

5.2. Parallel Computational Efficiency

Sub-regions are distributed to different working processors for simultaneous quad mesh generation using advancing
front. We test the parallel computation efficiency on our datasets: the pipe model (Figure 7), the terrain near West
Bay (Figure 8(a)), and the terrain near Matagorda Bay (Figure 8(b)) and the entire ocean region of the Gulf of
Mexico (Figure 8(c)). Figure 9(a) shows the actual meshing time on each working processor. The working time on
different processors are very balanced during the parallel execution.

Table 3: The Runtime Table for different partitioning algorithms.NS is the number of subregions. The runtime is in minute, and includes the
partitioning, meshing and relaxation time. Usually, the METIS is fastest, and our method has the second best efficiency.

Model Key Pipe Matagorda West Bay Gulf of Mexico
NS 16 64 256 1024 16 64 256 1024 16 64 256 1024 16 64 256 1024 16 64 256 1024

L∞-CVT 13.92 4.51 1.59 0.60 16.55 5.43 1.94 0.74 19.25 6.49 2.26 0.91 19.14 6.50 2.18 0.95 26.07 8.55 3.11 1.28
METIS 13.09 4.24 1.49 0.56 15.54 5.10 1.82 0.70 18.13 6.11 2.13 0.86 18.08 6.14 2.06 0.90 24.42 8.01 2.91 1.20
MADD 13.69 4.43 1.56 0.59 16.27 5.34 1.90 0.73 18.94 6.38 2.22 0.90 18.92 6.42 2.15 0.94 25.51 8.36 3.04 1.25

Our 13.60 4.40 1.55 0.58 16.07 5.28 1.88 0.72 18.78 6.33 2.20 0.89 18.70 6.35 2.13 0.93 25.27 8.29 3.01 1.24

We also run the experiments by changing the number of workingprocessors. The total run time is shown in Table 3.
METIS leads the fastest total running time, Our algorithm isabout 7% slower than METIS, 1% and 3% faster than
MADD and direct CVT respectively. Ideally, when the computation is evenly distributed to each processor, the speed
up would beT/D, whereT is the total time cost of our algorithm without parallelization, andD is the number of
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processors. But there are overheads of this divide-and-conquer pipeline, including the partitioning, data transmission,
and post-processing. The workload balancing also affects the speed-up performance. Figure 9 (b) plots the speedup
of our algorithm on different models. The yellow dot line is the ideal speedup, and our algorithm s’ parallel speed up
ranges from 2.78 to 601.5 when 4 to 1024 processors are used, respectively. The partitioning time usually takes up to
30% of the total time. To improve the meshing quality near theseparator, we apply a Laplacian relaxation [35] near
the separators after individually generated meshes are merged. Hence, a smallerLS will reduce this post-processing
time. In our experiments, the relaxation takes about 4% of the total computation time.

5.3. Meshing Quality Comparison

Model (NS) Sequential Algorithm L∞-CVT METIS MADD Our Method
Key (32) 0.97/ 0.13/ 0.39/ 35 0.98/ 0.14/ 0.38/ 233 0.93/ 0.27/ 0.23/ 411 0.97/ 0.18/ 0.23/ 226 0.98/ 0.13/ 0.38/ 216
Pipe (16) 0.97/ 0.04/ 0.31/ 34 0.97/ 0.04/ 0.30/ 55 0.94/ 0.09/ 0.23/ 128 0.95/ 0.07/ 0.23/ 84 0.97/ 0.04/ 0.30/ 50

Matagorda Bay (512) - 0.97/ 0.04/ 0.35/325 0.93/ 0.16/ 0.21/ 413 0.96/ 0.08/ 0.27/346 0.97/ 0.04/ 0.35/305
West Bay (512) - 0.96/ 0.05/ 0.36/ 235 0.93/ 0.12/ 0.24/ 562 0.95/ 0.07/ 0.28/ 321 0.98/ 0.05/ 0.36/ 225

Gulf of Mexico (1024) - 0.97/ 0.04/ 0.36/ 3158 0.96/ 0.15/ 0.21/ 3491 0.96/ 0.09/ 0.23/ 3201 0.98/ 0.04/ 0.36/ 3104

Table 4: Mesh Quality Comparison between the sequential meshing algorithm,L∞-CVT, METIS, MADD, and our algorithm. The sequential
algorithm applies the advancing front without partitioning; and it only works on small models such as the Key and Pipe.NS is the number of
subregions. The four values: (1) average, (2) standard deviation, and (3) minimum of the scaled Jacobian, and (4) the number of singularities are
listed to show meshing quality. The scaled Jacobian of our mesh is comparable to the sequential algorithm, but we have 20%more singularities.
The average and minimal scaled Jacobians of our algorithm are 10% and 4% better than METIS and MADD, respectively. Our singularities are 40%
and 20% fewer than METIS and MADD. Compared withL∞-CVT, our algorithm leads to about 4% better average and minimal scaled Jacobians
and 8% fewer singularities.

Table 4 compares the quality of final quad meshes generated bythe sequential algorithm and four parallel algo-
rithms using different partitioning methods. The sequential algorithm applies the advancing front to generate quad
mesh without partitioning. For large model such as Matagorda Bay, West Bay and Gulf of Mexico the sequential
algorithm failed to get a result. For each quad mesh, we compute four values, the (1) average, (2) standard deviation,
and (3) minimum of scaled Jacobian, and (4) the number of singularities. Ideally, the scaled Jacobian should be 1.
The scaled Jacobian of our mesh is comparable to the sequential algorithm, but we have 20% more singularities.
Compared with other partitioning techniques, our average and minimal scaled Jacobians are 10% and 4% better than
METIS and MADD respectively. Our singularities are 40% and 20% fewer than METIS and MADD. Compared with
L∞-CVT, our algorithm leads to about 4% better average and minimal scaled Jacobians and 8% fewer singularities.
These experiments show that our algorithm produces higher-quality quad meshes than other partitioning algorithms.

6. Conclusions

We present a parallel quad mesh generation pipeline for large-scale 2D geometric regions. A main contribution of
this work is the solving of data partitioning with effective incorporation of the geometric constraint on anglesbetween
separators. After partitioning, subregions are distributed to different processors for parallel mesh generation through
advancing front. Finally, after composition, post-processing is performed near partitioning boundaries for refinement.
We evaluate our partitioning and mesh generation algorithmin different experiments. Compared with other data
partitioning stratifies, our new algorithm leads to better partition result and final meshing quality.

In the future, we will generalize this parallel pipeline forstructured meshing of curved 2D manifolds and 3D solid
regions. We will also investigate parallel meshing algorithms with controlled singularity numbers and distributions.
For this purpose, singularity estimation needs to be incorporated in partition optimization; tessellation of subregions
may be computed through parameterization-based mesh construction algorithms [36][37] which globally control the
singularity distributions; and post-processing that allows the merging of nearby singularities may also be useful.
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